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A B ST R A CT 
Sky Islands present unique landscapes for organismal evolution because they comprise high mountain peaks separated by low valleys with vastly 
di$erent environmental conditions. !e Espinhaço Mountain Range in eastern Brazil is formed of groups of Sky Islands in the states of Minas 
Gerais and Bahia. Several phylogeographic studies have discovered strong genetic structure among populations of organisms occupying the 
campo rupestre (rupestrian "elds) in the mountains of the Espinhaço. In this study, we aimed to test the hypothesis of spatio-temporal structuring 
of populations of Scinax curicica in the campo rupestre of the Espinhaço. We recovered three lineages of S. curicica: one lineage occurs in the north 
portion of the Espinhaço (North Lineage) in an area called Chapada Diamantina, and other two occur in the south portion of the Espinhaço 
(South 1 and South 2 Lineages) in Minas Gerais. All three lineages showed stable population sizes through time, probably due to the climatic 
stability of mountaintop areas, which was supported by ecological niche modelling.
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I N T RO D U CT I O N
Montane areas in tropical regions are o%en called ‘cradles of 
biodiversity’ and ‘species pumps’ because of their high species 
richness (García-Rodríguez et al. 2021). !e ecological and evo-
lutionary processes generating and maintaining high biodiver-
sity in montane regions is an active area of research (Graham et 
al. 2014, Rahbek et al. 2019). Some mountain ranges referred to 
as Sky Islands present unique landscapes for organismal evolu-
tion because they comprise high mountain peaks separated by 
low valleys with vastly di$erent environmental conditions (e.g. 
temperature, humidity, vegetation). !ese valleys act as barriers 
to the dispersal between populations of organisms adapted to 
environmental conditions at higher elevations, leading to iso-
lation and divergence of populations on di$erent mountains 
(McCormack et al. 2011, Sekar and Karanth 2013). Within 

high-altitude areas, usually above 1000 m a.s.l., elevational vari-
ation in environmental conditions can also result in barriers to 
dispersal and gene &ow in some species or dispersal corridors 
for others, depending on their ecology (Ha$er and Prance 2002, 
Salerno et al. 2012). Furthermore, these are dynamic systems in 
which environmental changes may result in alternating periods 
of isolation and connection of populations. Such histories are 
o%en manifest in the distributions and population genetic struc-
ture of organisms, and even with the diversi"cation of species, 
as has been shown in species of lizards (Sinervo et al. 2010), 
mammals (Beever et al. 2011), and amphibians (Shepard and 
Burbrink 2008, 2009, Salerno et al. 2012).

!e Espinhaço Mountain Range  (herea%er Espinhaço) in 
eastern Brazil is formed of groups of smaller ranges (Sky Islands) 
in the states of Minas Gerais and Bahia, extending approximately 
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1200 km from north to south, with altitudes varying from 800 to 
2000 m a.s.l. !e Espinhaço form a border between the Atlantic 
Forest to the east and the open, savanna landscapes of the 
Cerrado and Caatinga bioregions to the north and west (Guedes 
et al. 2020). !e Espinhaço is divided into two main portions 
(from north to south): the north portion of the Espinhaço in 
Bahia State, known as Chapada Diamantina and the south por-
tion, which extends from south-western border of Chapada 
Diamantina to the Quadrilátero Ferrífero region representing its 
southernmost limit, in Minas Gerais State.

Along the length of the Espinhaço, di$erent altitudes rise to 
a variety of climatic conditions and habitats, with the campo 
rupestre (rupestrian "elds) being the predominant formation at 
altitudes above 1000 m a.s.l. (Schaefer et al. 2016, Miola et al. 
2021). !e campo rupestre is characterized as a high-altitude mo-
saic of grassy-shrubby vegetation, interspersed with rocky out-
crops, and encompassing grasslands with patches of transitional 
vegetation from Caatinga, Cerrado, and Atlantic Forest (Silveira 
et al. 2016). In terms of its ecological signi"cance, campo rupestre 
has been identi"ed as microrefugia during the interglacial 
periods of the Pleistocene, providing shelter for species adapted 
to cold and drought in tropical regions (Colleva'i et al. 2012, 
Bonatelli et al. 2021). !ese rocky outcrops acted as refuges for 
species during climatic &uctuations, helping to maintain local 
biodiversity. Furthermore, research suggests that the cyclic ex-
pansion and contraction of species ranges during Quaternary 
climate changes have played a signi"cant role in shaping the 
current levels of population genetic structure for campo rupestre 
species (Barres et al. 2019, Oliveira et al. 2021). !ese historical 
range dynamics have contributed to the genetic di$erentiation 
and isolation of populations, leading to unique genetic signa-
tures within campo rupestre species.

Several recent phylogeographic studies have been published 
on endemic anuran species in the campo rupestre (Carvalho et al. 
2020, Oliveira et al. 2021, Oswald et al. 2022); however, these fo-
cused on species restricted to the southern or northern portion 
of the Espinhaço. Nonetheless, these studies have demonstrated 
that, even at a smaller spatial scale, the mountains comprising 
the southern Espinhaço act as Sky Islands, generating strong 
genetic structure among populations of organisms occupying 
these rocky meadows. !e leaf frog Pithecopus megacephalus was 
found to comprise three phylogeographic lineages, with one ex-
clusively from a separate area in north Minas Gerais (Magalhães 
et al. 2017). !e treefrog Bokermannohyla saxicola, another spe-
cies endemic to the southern portion of the Espinhaço, was re-
cently found to consist of four lineages that diverged from the 
Pliocene to Early Pleistocene (Oswald et al. 2022). A species 
from the same genus, Bokermannohyla alvarengai, which also 
occurs in the southern Espinhaço, was shown to comprise two 
geographically distinct lineages (Oliveira et al. 2021). Despite 
the number of lineages di$ering among these taxa, the gen-
etic breaks appear concordant geographically, with the moun-
tains in northern Minas Gerais separated from the others. One 
of the few studies with frogs from the northern portion of the 
Espinhaço in Bahia (Chapada Diamantina), was conducted with 
Bokermannohyla oxente, which is structured in two lineages even 
within its small distribution (Oliveira et al. 2021).

Among amphibians, treefrogs of the genus Scinax Wagler, 
1830 form the second most diverse genus in Hylidae, and are 

represented by a wide range of species occupying di$erent envir-
onmental conditions in the Neotropics (Faivovich et al. 2005). 
For some species of this genus, occurrence in the campo rupestre 
of the Espinhaço has been an important factor in speciation. 
Examples include the narrow endemic Scinax cabralensis found 
exclusively in Serra do Cabral, Minas Gerais, on the western 
slopes of the southern portion of the Espinhaço (Drummond 
et al. 2007), Scinax machadoi, which is endemic to the southern 
portion of the range (Leite et al. 2008), and Scinax montivagus, 
which is found only in Chapada Diamantina, Bahia, in the north 
portion of the Espinhaço ( Juncá et al. 2015). In the Espinhaço, 
Scinax curicica occupies campo rupestre areas (Pugliese et al. 
2004) with a discontinuous distribution along the whole 
Espinhaço, exclusively at altitudes above 850 m a.s.l. (Leite et al. 
2006, 2008). !e species reproduces mainly in permanent lentic 
environments, but also in small slow-&owing streams (Eterovick 
2003, Pugliese et al. 2004).

Our study focuses on the spatio-temporal structuring of S. 
curicica populations in the campo rupestre of the Espinhaço. 
We propose that Pleistocene climate changes and the unique 
landscape of altitude islands played a key role in the species’ 
diversi"cation. !ese climate &uctuations prompted habitat 
shi%s and speciation in various organisms. !e EMR, with 
isolated high-altitude areas, created a fragmented landscape 
enabling geographic isolation and limited gene &ow among S. 
curicica populations. !ese geographic barriers, combined with 
Pleistocene climatic variability, likely led to distinct genetic lin-
eages. Accordingly, we predict genetic di$erentiation and unique 
adaptations in S. curicica populations across the campo rupestre 
of the EMR, re&ecting speci"c local environments. We used 
phylogenetic analysis of mitochondrial and nuclear DNA, di-
vergence dating, historical demography analysis, and ecological 
niche modelling (ENM) to examine the population history of 
this species. Speci"cally, we evaluated the evolutionary history 
and the e$ects of Quaternary climate change on the population 
demography of S. curicica, predicting that mountaintops act as 
Sky Islands, driving the diversi"cation of genetic lineages within 
this endemic Espinhaço treefrog.

M AT E R I A L  A N D  M ET H O D S

Taxon sampling
DNA was sampled from 51 specimens from 13 sites along 
the Espinhaço (Fig. 1; Supporting Information, Table S1). 
Tissue was removed from either the thigh muscle or the liver. 
All samples were preserved in absolute (100%) alcohol and 
stored in a freezer at -20 °C until the time of DNA extraction. 
Voucher specimens are housed in the Amphibian Collection 
of the Universidade Federal de Minas Gerais (UFMG-AMP) 
(Supporting Information, Table S1). We conducted this study 
under Sistema de Autorização e Informação em Biodiversidade 
(SISBIO) license number ICMBio 21185-1.

DNA extraction, ampli!cation, and sequencing
We extracted genomic DNA using either the CTAB tech-
nique or a Qiagen DNeasy Blood and Tissue® Kit (QIAGEN 
GmbH, Hilden, Germany). We performed PCR using spe-
ci"c primers for amplifying the mitochondrial 16S rRNA 
gene: 16sAR (CGCCTG(TATCAAAAACAT) and 16sBR 
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(CTCCGG(TGAACTCAGATCA) (Palumbi et al. 1991). 
We also ampli"ed a portion of the nuclear-encoded RHOD 
(rhodopsin) gene using the following primers: Rhod1A 
(ACCATGAACGGAACAGAAGGYCC) and Rhod1C 
(CCAAGGGTAGCGAAGAARCC(C) (Bossuyt and 
Milinkovitch 2000). Reactions contained 0.5 U of GoTaq G2 
Hotstart DNA polymerase (Promega), 1 × PCR bu$er, 0.25 
mM of each dNTP, 2 mM of MgCl2, and 0.25 mM of each 
primer. PCR conditions followed Costa et al. (2016) and Mângia 
et al. (2020). We puri"ed PCR products using the Acetate-
Ammonium technique (Irwin et al. 2003) and we veri"ed the 
quality of the puri"ed DNA using a NanoDrop® ND-1000 spec-
trophotometer (!ermo Scienti"c, USA). Puri"ed PCR prod-
ucts were then sequenced on an ABI 3500 Genetic Analyzer 
(Applied Biosystems, USA). We aligned sequences with 
Geneious® R9 9.1.3 (Bioma'ers Ltd, Auckland, New Zeland).

Mitochondrial phylogeny and molecular dating
We estimated a Bayesian gene tree for the 16S rRNA locus using 
BEAST 2.6 (Bouckaert et al. 2019). !e most appropriate sub-
stitution model was GTR+I+G, which was determined using 
jModelTest (Darriba et al. 2012). We used a Yule speciation 
prior, implemented a strict-clock rate of 0.00735 (minimum of 
0.0061; maximum of 0.0087) substitutions per site per million 
years (Gehara et al. 2014) with a uniform distribution prior, and 
ran the analysis for 50 million generations sampling every 5000 
generations. We used Tracer 1.7.1 (Rambaut et al. 2018) to as-
sess e$ective sample sizes (ESS) of estimated parameters and 
stationarity, ensuring that ESSs of all parameters were > 200 
(Rambaut et al. 2018).

Population analysis assignment and genetic diversity
We performed analysis of population structure in GENELAND 
4.0.3 (Guillot et al. 2005) as implemented in R 3.1.1 (R Core 

Team 2015). GENELAND analysis is a spatial genetic analysis 
tool that applies Bayesian methods to genetic data. It assumes that 
genetic information shows spatial pa'erns and aims to identify 
the number and locations of distinct populations. GENELAND 
deals with spatial genetic structure and population boundaries 
within a speci"c geographic region (Guillot et al. 2005). For this 
analysis, we used 16S rRNA sequences. We determined K by the 
Markov chain Monte Carlo method (MCMC) with six repeti-
tions of K from 1 to 5. !is range was chosen based on the main 
clades found in the mtDNA tree. We also performed species de-
limitation analysis using the generalized mixed Yule coalescence 
(GMYC) and multi-rate Poisson tree process (mPTP) methods. 
Both methods aim to identify species boundaries based on pat-
terns observed in molecular phylogenies, given that GMYC 
employs the Yule process to model speciation and coalescence 
events (Fujisawa and Barraclough 2013), whereas mPTP de-
termines the transition from a between‐ to a within‐species 
process, incorporating di$erent levels of intraspeci"c diversity 
deriving from di$erences in either the evolutionary history or 
sampling of each species (Kapli et al. 2017). In addition, mPTP 
has demonstrated superiority over PTP and other widely-used 
distance-based approaches, consistently providing more ac-
curate delimitations in accordance with taxonomy (Blair and 
Bryson 2017, Kapli et al. 2017). For both analyses, we used the 
ultrametric 16S rRNA phylogenetic tree generated in BEAST. 
!e GMYC approach was carried out in R 4.2.3 (R Core Team 
2023) using the splits (Ezard et al. 2010) and ape (Paradis et al. 
2004) packages.

Finally, we built haplotype networks for each of the genes 
using the median-joining method (Bandelt et al. 1999) imple-
mented in Population Analysis with Reticulate Trees (PopART), 
using the standard con"gurations (Leigh and Bryant 2015). We 
calculated the number of haplotypes (h), haplotype diversity 
(Hd), and nucleotide diversity (π) for each mitochondrial and 
nuclear locus for each of the lineages identi"ed by the GMYC 
and mPTP analysis using DnaSP (Rozas et al. 2017). We quan-
ti"ed genetic di$erentiation among and within lineages through 
Analysis of Molecular Variance (AMOVA) as implemented in 
PopART (Leigh and Bryant 2015).

Historical demography
We evaluated past changes in e$ective population size (Ne) of 
each lineage using the Bayesian Skyline Plot (BSP) method im-
plemented in BEAST 2.6 (Bouckaert et al. 2019). For the BSPs, 
we used an average substitution rate of 0.00735 (with a minimum 
of 0.0061 and a maximum of 0.0087) substitutions per site per 
million years (Gehara et al. 2014) and the GTR+I+G substitu-
tion model. Each BSP analysis was evaluated with a piecewise-
linear population function, "ve groups, 50 million generations, 
and 10% burn-in. We checked for stationarity by visually 
inspecting trace plots and ensuring that all values for e$ective 
sample sizes (ESS) were above 200 in Tracer 1.7.1 (Rambaut et 
al. 2018). We copied the curve values from Tracer 1.7.1 and built 
the BSP curve in Microso% Excel.

Ecological niche modelling
In order to elucidate the e$ect of Quaternary climate change 
on the population structure of S. curicica, we used an ENM ap-
proach to model the species’ potential distribution under past 
climate change scenarios. Current and historical (6 kya, 21 kya, 

Figure 1. Topographic map showing the known geographic 
distribution of S. curicica in white circles. All genetic samples used 
in this study are illustrated by coloured circles within white circles 
coded by lineage. Abbreviations are as follows: MG—Minas Gerais, 
BA—Bahia, ES—Espírito Santo, RJ—Rio de Janeiro.
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and 120 kya) climatic data consisted of the 19 standard Bioclim 
variables (30 arc-seconds resolution) (Fick and Hijmans 2017). 
!is period was selected because it represents the climatic ex-
tremes during the past 120 kya and other authors suggest that 
important climatic changes occurred in the campo rupestre 
during this period (Carvalho et al. 2020, Magalhães et al. 2021). 
We analysed a total of 26 occurrence records prior to "ltering 
from the databases of the Mapinguari Laboratory at the Federal 
University of Mato Grosso do Sul, and the Sagarana Laboratory 
at the Federal University of Viçosa - Campus Florestal, Brazil. 
To avoid overprediction and low speci"city, we cropped the en-
vironmental layers to span from -25° to -10° latitude and -48° to 
-38° longitude. Locality data were spatially "ltered at 2 km2 using 
the R package sp"in (Aiello-Lammens et al. 2015) to elim-
inate spatial clusters of localities, which resulted in 23 spatially 
independent occurrence locations for modelling. To avoid bias 
related to multicollinearity of environmental explanatory vari-
ables, we calculated the Variance In&ation Factor (VIF) values 
for variables. All values that were highly correlated (VIF > 5) 
were removed through a stepwise procedure, using the usdm R 
package v.1.1-18 (Naimi 2017). !us, we retained "ve of the 
19 bioclimatic variables that were used throughout this study 
(Bio1—Annual Mean Temperature, Bio2—Mean Diurnal 
Range, Bio3—Isothermality, Bio14—Precipitation of Driest 
Month, Bio18—Precipitation of Warmest Quarter).

We performed species distribution modelling on S. curicica 
using nine di$erent algorithms implemented in the ‘biomod2’ 
package (!uiller et al. 2016) in R 4.1 (R Core Team 2021) 
including the following: three regression methods [GAM: 
general additive model (Hastie and Tibshirani 1990), GLM: 
general linear model (McCullagh and Nelder 1989), MARS: 
multivariate adaptive regression splines (Friedman 1991)]; three 
machine learning methods [GBM: generalized boosting model 
(Ridgeway 1999), MAXENT: Maximum Entropy (Phillips et 
al. 2006), RF: random forest (Breiman 2001)], two classi"ca-
tion methods [CTA: classi"cation tree analysis (Breiman 1984), 
FDA: &exible discriminant analysis (Hastie et al. 1994)], and 
one envelope model [SRE: Surface Range Envelop (Booth et 
al. 2014)]. To meet the criteria of having absence (or pseudo-
absence) data for most of these models (except SRE), we gen-
erated two equal-sized (to the true presence records) sets of 
random pseudo-absence (PA) points across the model back-
ground (500 PA points in each set). !e models were calibrated 
using 70% of randomly selected data. !e other 30% of the data 
were used for intrinsic model evaluation.

Individual model performance was evaluated using two met-
rics—true skill statistic (TSS) and the area under the curve of 
receiver operating characteristics (ROC) implemented in the 
‘biomod2’ package. TSS is calculated as ‘sensitivity + speci"city 
-1’ and ranges from -1 to +1, where +1 indicates perfect agree-
ment, a value of 0 implies agreement expected by chance, and a 
value of less than 0 indicates agreement lower than expected by 
chance. Models with high predictive accuracy (TSS > 0.8) were 
used for the projection of anuran distribution. We constructed 
ensemble maps based on the median of two runs of all the 
selected models in which individual accuracy had a TSS value 
equal to or greater than 0.8. Regions of habitat stability through 
time were identi"ed by stacking and averaging the current and 
three projected-palaeoclimate ENMs. Regions highlighted in 

these stacked projects were inferred to be regions of climate re-
fugia through time for S. curicica.

R E SU LTS

Mitochondrial phylogeny and molecular dating
!e 16S rRNA gene tree topology recovered three main clades 
in S. curicica (Fig. 2). One lineage occurs in the north portion 
of the Espinhaço (North Lineage), in the Chapada Diamantina 
region, precisely in the Serra da Almas, Serra da Tromba, and 
Serra do Sincorá, and the other two lineages occur in the South 
Espinhaço (South 1 and South 2 Lineages) in Minas Gerais (Fig. 
1). South 1 Lineage occurs from the Quadrilátero Ferrífero re-
gion, along the Serra do Cipó. South 2 Lineage occurs in the 
Serra de Itacambira and Serra Nova (Supporting Information, 
Table S1).

!e three main clades, which corresponded to the three lin-
eages, were recovered with strong support of posterior prob-
ability (pp ≥ 0.99; Fig. 2). !e divergence between the North 
Lineage and Southern Lineages occurred around 2.51 Mya (95% 
HPD: 1.73–3.35 Mya), and the separation between the two 
South lineages dated to about 1.68 Mya (95% HPD [Highest 
Posterior Density]: 1.11–2.31 Mya; Fig. 2).

Population analysis assignment and genetic diversity
Using both mtDNA and nuDNA loci, GENELAND detected 
three populations corresponding to the three mitochondrial lin-
eages (K = 3; Fig. 3; Supporting Information, Fig. S1), and re-
vealed a clear geographical population structure concordant with 
the di$erent regions of the Espinhaço. !e GMYC and mPTP 
(likelihood ratio: 9.364408; Null-model score: -47.635644) spe-
cies delimitation methods yielded identical results, recovering 
the same three evolutionary entities (Fig. 2).

!e 16S rRNA haplotype network revealed high haplotype di-
versity with no shared haplotypes among the three lineages (Fig. 
2). Despite high diversity in mtDNA, our haplotype network 
of the nuclear-encoded RHOD gene showed only two haplo-
types with no congruence with geographic distributions. In our 
AMOVA analysis, we found a high index of "xation for the mito-
chondrial 16S rRNA (Fst = 0.93924, P < 0.001), whereas the 
index of "xation was low for RHOD (Fst = 0.41322, P < 0.001), 
indicating most of the variation in RHOD occurs among local-
ities rather than among populations.

Historical demography and ecological niche modelling
!e North population of S. curicica had the most recent coales-
cent point, approximately 47 kya. On the other hand, both South 
1 and South 2 populations had their coalescent points around 300 
kya. Despite the di$erent coalescent times, all three populations 
show stable e$ective population sizes (Ne) through time (Fig. 4).

!e resulting ensemble models based on nine SDM algo-
rithms yielded average values of TSS = 0.97 and ROC = 0.99. 
!e variable Bio1 (annual mean temperature) was the most 
important variable (63% of explication) to S. curicica distribu-
tion, followed by precipitation of driest month (Bio14, 36% 
of explanation) and precipitation of warmest quarter (Bio18, 
33% of explication). !e potential distribution for S. curicica 
(Fig. 5) generated by ENMs for the present coincides well with 

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/advance-article/doi/10.1093/biolinnean/blad125/7317611 by The Field M

useum
 of N

atural H
istory user on 27 O

ctober 2023

http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blad125#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blad125#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blad125#supplementary-data


Phylogeography of Scinax curicica • 5

the species known distribution throughout the Espinhaço, al-
though it also predicts suitable conditions exist in other moun-
tainous areas in south-eastern Brazil, including part of the Serra 

da Mantiqueira Mountain Range, and other highlands in the 
Cerrado ecoregion. !e predicted distribution for the Holocene 
(6 kya) climate indicates minor changes for S. curicica. However, 

Figure 2. Phylogeny and divergence times of S. curicica lineages estimated in BEAST, with results from GMYC and mPTP analysis. Haplotype 
networks from neighbour-joining analysis for the two genes (16S rRNA and Rhodopsin). Crossed traits indicate additional mutational steps 
for branches with more than one mutation. Di$erent colours indicate species-level units. !e black dots are median vectors (hypothesized 
sequences).
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during the Last Glacial Maximum (21 kya) the potential distri-
bution was immensely expanded throughout surrounding re-
gions. !e predicted distribution of S. curicica during the Last 
Interglacial (120 kya) was similar to the current and Holocene 
periods but slightly more expansive. !e stability map generated 
with all four distribution models suggests suitable regions with 
a similar distribution to the current known distribution for this 
species, predicting mainly the highlands of the Espinhaço.

D I S C U S S I O N
We found that S. curicica comprises three geographically distinct 
lineages that originated at the Pliocene–Pleistocene boundary 
(~2.51 Mya) and in the Early Pleistocene (~1.68 Mya). !e 
three lineages, which were supported by the GENELAND ana-
lysis and in both species’ delimitation methods, have remained 
distinct throughout much of the Pleistocene. Our ENMs sug-
gested climatically stable regions very similar to the current spe-
cies’ distribution, which coincides with the Sky Islands of the 
Espinhaço Range (elevations > 1000 m a.s.l.). Our models in-
dicate potentially suitable habitat for this taxon has not shi%ed 
greatly through time, despite the great expansion over 21 kya, 
which supports a strong relationship with a campo rupestre 
mountaintop habitat for this species. !e climatic scenario in Sky 
Islands is known for promoting diversi"cation in several amphib-
ians throughout the globe (Shepard and Burbrink 2008, 2009, 
Salerno et al. 2012, Pan et al. 2019), including in other moun-
tain complexes in southern Brazil (Pie et al. 2018) and even for 

other hylids in the Espinhaço (Carvalho et al. 2020, Magalhães 
et al. 2021, Oliveira et al. 2021, Oswald et al. 2022). Our "nd-
ings for S. curicica corroborate the same climatic scenario for the 
other hylids from Espinhaço, in which mountaintops acted as 
refugia during the climatic oscillations of the Pleistocene, pro-
moting allopatric divergence (Nascimento et al. 2018, Oliveira et 
al. 2021, Oswald et al. 2022). !e stable population sizes for the 
three lineages we recovered also supports the stability of climate 
and habitat on mountaintops along the Espinhaço.

Consistent with the Espinhaço being Sky Islands, climatic 
breaks are evident along the range, with a marked break between 
the northern (Chapada Diamantina) and southern portions, 
and other discrete breaks in the southern portion (Fig. 5). !ese 
breaks coincide with the distributions of the three allopatric 
lineages of S. curicica, reinforcing their geographic isolation. 
Despite the climatic stability through time on the mountaintops, 
divergences among the three S. curicica lineages are older than 
the modelled climatic scenarios, but still within the Pleistocene, 
a period characterized by global climatic oscillations (Peçanha et 
al. 2017, Cassino et al. 2020, Rocha et al. 2020). Divergence times 
among B. saxicola lineages within the Southern Espinhaço and 
for B. oxente within the north portion of the Espinhaço, also oc-
curred during the Pleistocene, with well-structured geographic 
distributions on Sky Islands (Oliveira et al. 2021, Oswald et al. 

Figure 3. GENELAND analysis of S. curicica with posterior 
probability isoclines, indicating extensions of the genetic 
populations found (black lines with inclusion probabilities). 
Light colour zones in maps indicate the groups of localities with 
greater probabilities of belonging to the same genetic unit. Black 
dots indicate locations of the 13 analysed localities. (A) North 
population, (B) South 1 population, and (C) South 2 population.

Figure 4. Bayesian skyline plots illustrating e$ective population 
sizes (Ne) through time for the three S. curicica lineages: North (N), 
South 1 (S1), and South 2 (S2). !e darker inner line represents 
median population size, and the shaded area represents 95% HPD.
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2022). Persistence and allopatric divergence of S. curicica on 
the Sky Islands of the Espinhaço throughout the Pleistocene are 
consistent with results for many other amphibians in di$erent 
Sky Island systems (e.g. Shepard and Burbrink 2008, Salerno et 
al. 2012, Magalhães et al. 2021, Ortiz et al. 2022). Our results 
provide additional support for the importance of Pleistocene 
climatic oscillations in promoting lineage divergence and speci-
ation in montane anurans.

!e major portions of the Espinhaço share similar geomorpho-
logical features with many mountaintops and intervening valleys 
within the major portions. Even these smaller valleys, which are 
not as low in elevation or as wide as the valleys between the major 
portions, can act as barriers to gene &ow and promote diversi"-
cation. For example, the paratelmatobiin frog, Rupirana cardosoi, 
occurs only in the northern portion of the Espinhaço (Chapada 
Diamantina), but two populations occur within this portion, 
which were recently shown to be two allopatric lineages (Santos 
et al. 2020). Many other anurans, and perhaps other dispersal-
limited organisms, will probably share similar pa'erns of popu-
lation genetic structure. !e same microregional scenario could 
occur with other frog genera such as dwarf odontophrynids of 
the genus Proceratophrys (Teixeira Junior et al. 2012), the direct-
developing strabomantid Pristimantis (Trevisan et al. 2020), 
and other treefrogs of the genus Bokermannohyla (Oliveira et al. 
2021). Climatic heterogeneity in Sky Island landscapes can re-
sult in both broad- and "ne-scale pa'erns of genetic di$erenti-
ation and thus, the ecology of each species must be considered 
in order to understand how climatic variation a$ects di$erent 
species (Shepard and Burbrink 2008, Gehara et al. 2017).

Few anuran species (or species complex) endemic to the 
Espinhaço are well distributed throughout the range, occurring 
in both its northern and southern portions. Although Pleurodema 
alium (see Maciel and Nunes 2010: "g. 4) and Leptodactylus 
avivoca (see Carvalho et al. 2020: "g. 1) occur in the south por-
tion of the Espinhaço and in the Espinhaço of the Bahia State, 
neither of these species reach the Chapada Diamantina in 
fact, as they occur in an extension of the southern Espinhaço 
throughout Bahia. To date, S. curicica (Leite et al. 2008, present 

work) and the Odontophrynus juquinha complex (Rocha et al. 
2017, Moroti et al. 2022) are the only anurans with this distri-
bution, occurring from southernmost Espinhaço to southern 
Chapada Diamantina, and revealed a similar allopatric scenario 
of lineage diversi"cation. A recent evaluation of O. juquinha even 
suggested that populations from north Espinhaço (Chapada 
Diamantina) are a putative new species (Moroti et al. 2022).

Here we showed S. curicica is composed of three genetic-
ally and geographically distinct lineages across the Espinhaço. 
Following these results, we advocate for an integrative taxonomic 
approach including a thorough study of the acoustics, and adult 
and larval morphology to determine if these lineages should be 
considered distinct species (Padial et al. 2010). Until this is de-
termined, we suggest the North and South 1 Lineages warrant 
special a'ention for conservation purposes because they occur 
in a small area, restricted to a few Sky Islands above 1000 m a.s.l.
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