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Abstract
1.	 Studying species interactions in nature often requires elaborated logistics and 

intense fieldwork. The difficulties in such task might hinder our ability to answer 
questions on how biotic interactions change with the environment. Fortunately, 
a workaround to this problem lies within scientific collections.

2.	 For some animals, the inspection of preserved specimens can reveal the scars of 
past antagonistic encounters, such as predation attempts. A common defensive 
behaviour that leaves scars on animals is autotomy, the loss of a body append-
age to escape predation. By knowing the collection site of preserved specimens, 
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1  |  INTRODUC TION

Understanding how biotic interactions are influenced by the envi-
ronment is important to reveal the outcomes of the human driven 
disruption of the biosphere (Cardinale et al., 2012). However, study-
ing species interactions in nature is often challenging because of 
the required fieldwork logistics and sampling effort (Torre Cerro 
& Holloway, 2021). Fortunately, a workaround to this problem lies 
within scientific collections. For some animal groups, examining pre-
served specimens can reveal evidence of past biotic interactions, 
such as nonlethal injuries as amputation and scars resulting from 
antagonistic encounters (Bateman & Fleming, 2009). Based on the 
collection site of preserved specimens, one can compare environ-
mental conditions experienced by specimens with and without body 
scars (Guedes et al., 2020; Kuo & Irschick, 2016). Likewise, one can 
investigate the importance of biology, ecology, and biogeography on 
the occurrence of scars in preserved specimens (Costa et al., 2014; 
Fleming et al., 2007).

A plethora of antipredator mechanisms have evolved across 
different animal groups (Ruxton et al.,  2019), but a well-known 

strategy to leave scars on animals' bodies is autotomy—the defen-
sive behaviour of losing a body appendage (Emberts et al.,  2019). 
This behaviour has evolved multiple times across the tree of life and 
plays an important role in predator–prey dynamics, competition, 
habitat selection, and many other ecological aspects (Bateman & 
Fleming, 2009; Fleming et al., 2007). Although preserved specimens 
can be used to identify environmental and biological correlates of 
autotomy, research on this topic should consider at least two points. 
First, some species can regenerate body parts after autotomy, which 
may hinder the discrimination between specimens that never used 
autotomy from those collected after regeneration and add uncer-
tainty on how many times autotomy has been used by a given spec-
imen. Second, the information extracted from preserved specimens 
must include potential autotomy correlates that vary across the geo-
graphical space and/or biological spectrum. Hence, limited spatial 
coverage will hardly capture environmental conditions potentially 
favouring autotomy, whereas the use of single or few related taxa 
can prevent the assessment of biological and ecological correlates 
varying above the species- or genus-level. Within this context, 
snakes and amphisbaenians (worm lizards) represent suitable taxa to 
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it is possible to assess the influence of organismal biology and the surrounding 
environment in the occurrence of autotomy.

3.	 We gathered data on tail loss for 8189 preserved specimens of 33 snake and 11 
amphisbaenian species to investigate biological and environmental correlates 
of autotomy in reptiles. We applied generalized linear mixed effect models to 
evaluate whether body size, sex, life-stage, habitat use, activity pattern, biome, 
tropicality, temperature and precipitation affect the probability of tail loss in 
limbless reptiles.

4.	 We observed autotomy in 23.6% of examined specimens, with 18.7% of am-
phisbaenian and 33.4% of snake specimens showing tail loss. The probability 
of tail loss did not differ between snakes and amphisbaenians, but it was higher 
among large-sized specimens, particularly in adults and females. Chance of tail 
loss was higher for diurnal and arboreal species, and among specimens collected 
in warmer regions, but it was unaffected by biome, precipitation, and tropicality.

5.	 Autotomy in limbless reptiles was affected by size-dependent factors that inter-
play with ontogeny and sexual dimorphism, although size-independent effects of 
life-stage and sex also shaped behavioural responses to predators. The increase 
in probability of tail loss with verticality and diurnality suggests a risk-balance 
mechanism between species habitat use and activity pattern. Although autot-
omy is more likely in warmer regions, it seems unrelated to seasonal differences 
in snakes and amphisbaenians activity. Our findings reveal several processes 
related to predator–prey interactions involving limbless reptiles, demonstrating 
the importance of scientific collections to unveil ecological mechanisms at dif-
ferent spatio-temporal scales.

K E Y W O R D S
autotomy, biotic interaction, natural history, reptile ecology, scientific collection, tail loss
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research autotomy since these animals do not regenerate lost body 
parts (Gans, 1978; Slowinski & Savage, 1995), and are widely distrib-
uted across the geographical and ecological space (Roll et al., 2017).

Snakes and amphisbaenians may shed their tails during an-
tagonistic encounters (Costa et al.,  2014; Guedes et al.,  2020). 
Amphisbaenians can use this defensive behaviour only once 
(Gans, 1978), and although multiple tail breakage is possible in some 
snakes (Slowinski & Savage, 1995), it may not be very common (Costa 
et al., 2014; Dourado et al., 2013; Pleguezuelos et al., 2013). Because 
autotomy decreases the relative length of snake tail, the chances of 
new attacks hitting the remaining tail are likely lower compared to 
similar-sized individuals with relatively longer tail. The limited num-
ber—or absence— of autotomy repetitiveness in snakes and am-
phisbaenians, coupled with the lack of tail regeneration, make this 
defensive behaviour a unique and valuable antipredator strategy. 
Tail autotomy in squamates—including lizards—is often associated 
with greater predation intensity due to higher abundance and/or 
richness of predators (Cooper et al., 2004; Kuo & Irschick, 2016; Lin 
et al., 2017; Pianka, 1970; Vidal-García et al., 2011). Herein, we used 
thousands of preserved specimens of several snake and amphisbae-
nian species to investigate biological and environmental correlates 
of tail loss in extant limbless reptiles. We aimed to assess nine hy-
potheses regarding the correlates of tail loss in these taxa:

1.	 Body size: larger individuals have likely grown for more time, 
and therefore accumulated more chances of facing predation 
attempts relative to smaller ones (Halliday & Verrell,  1988). 
We expect a positive correlation between probability of tail 
loss and body size within each species.

2.	 Life stage: ontogenetic differences in morphology and behav-
iour may lead to different exposure rates to predators between 
life stages. For instance, juveniles may spend more time hidden 
(Gregory & Isaac, 2005) or be more lethally affected by predator 
attacks than adults (Willis et al., 1982), hampering the collection 
of juveniles with lost tails (Costa et al., 2014). Juveniles have been 
alive for a shorter period, which could also decrease chances of 
tail loss. We expect lower probability of tail loss in juveniles than 
in adults.

3.	 Sex: intraspecific differences in body size and behaviour may 
occur between male and female reptiles. In snakes, sexual size di-
morphism (SSD) is often biased towards females whose larger size 
allows high reproductive output (Cox et al.,  2007). The greater 
reproductive output of larger females can impose extended ac-
tivity time or greater home range, and changes in dietary habits 
(Shine & Wall, 2006) that may ultimately increase the exposure 
of females to predators, at least among female-biased sexual di-
morphic species. In addition, because male reproductive organs 
are found inside the tail base, male snakes may avoid tail autot-
omy to prevent decreasing mating success (Shine et al.,  1999). 
Information on sexual differences in amphisbaenian body damage 
is virtually absent, which hampers more directional expectations 
regarding worm-lizards. For now, we expect the probability of au-
totomy to differ between sexes.

4.	 Activity time: snakes and amphisbaenians are most commonly 
preyed upon by squamate and bird species (Schalk & Cove, 2018). 
Since most birds and squamate reptiles have diurnal habits 
(Meiri,  2018; Wilman et al.,  2014), we expect diurnal limbless 
reptiles to experience higher predation attempts and thus show 
higher probability of tail loss.

5.	 Habitat use: the exposure level of a species to predators can dif-
fer according to its habitat use. Fossorial species might be less 
exposed to aboveground predators relative to nonfossorial ones 
(Ferreira & Faria, 2021), whereas arboreal snakes may have more 
limited access to shelters and retreats relative to terrestrial spe-
cies, increasing their susceptibility to predators. Indeed, a higher 
predation pressure on arboreal snakes is invoked to explain the 
greater diversity of defensive behaviours in arboreal than terres-
trial species (Martins et al., 2008). We expect a higher probability 
of tail loss among species with higher levels of verticality in habi-
tat usage.

6.	 Biome: at broad spatial scales, the biogeographic species pool of 
predators may differ across biomes. For instance, biomes with 
higher levels of vegetation complexity can support more preda-
tors (Monagan et al.,  2017), which could make snakes and am-
phisbaenians more prone to predation attempts and increase 
autotomy frequency in those environments.

7.	 Tropicality: mammal, bird and reptile richness increase towards 
the equator (Moura et al., 2016; Roll et al., 2017). Since these ver-
tebrates are the main predators of snakes and amphisbaenians 
(Schalk & Cove, 2018), predation intensity could be higher in the 
tropics due to greater predator diversity (Roslin et al., 2017). We 
expect chances of tail loss to be higher among specimens from 
tropical than temperate regions.

8.	 Temperature: squamate reptiles are ectothermic animals and 
their biology is highly dependent on external sources of tem-
perature (Pianka & Vitt, 2003). Specimens from warmer localities 
can be more active than those from colder regions (Buckley et 
al., 2012) and increase their exposure time to predators. In con-
trast, the overheating risk may constrain the activity of tropical 
reptiles (Kearney et al., 2013; Sinervo et al., 2010), but it could 
still promote biotic interactions by increasing the potential for 
overlap between daily activities of prey and predators. Although 
the same reasoning could be applied to temperate reptiles fac-
ing shorter activity times, the lower predation pressure in high 
latitudes (Roslin et al., 2017) may counterbalance the outcome of 
high temporal niche overlap of species there. Hence, temperature 
may increase chances of encountering predators in multiple ways 
and increase the probability of tail autotomy.

9.	 Precipitation: high water availability might increase exposure 
of snakes and amphisbaenians for at least three reasons. First, 
heavier rainfalls may fill underground galleries more often and 
force fossorial species to the surface where aboveground preda-
tors are (Bates, 1993). Second, increased water availability affects 
invertebrate and amphibian abundance and activity, which may 
in turn increase prey availability to many amphisbaenians and 
snakes (Reynolds, 1982). Third, water helps reptiles to buffer heat 
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constraints along their climatic niche, with fully hydrated animals 
extending their activity time (Kearney et al.,  2013). We expect 
higher chances of autotomy in limbless reptiles inhabiting wetter 
regions.

Without scientific collection, improving our ecological knowl-
edge on species that are either ‘hard-to-find’ or recorded through 
fortuitous encounters, such as many snake and most amphisbaenian 
species (Colli et al., 2016), would be a very unreachable task. Our 
macroecological approach takes advantage in exploring potential 
patterns of tail loss across broad spatial and taxonomic scales.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

We examined a total of 8847 preserved specimens of 58 snake and 
22 amphisbaenian species, deposited in 61 collections from 11 coun-
tries (when not specified, acronyms follow Sabaj,  2020): Argentina: 
FML. Brazil: AAGARDA (Adrian A. Garda, field series, transferred to 
CHUFPB), CEPB, CHUFPB, CHUFPI, CHUFS, CHUFSC, CHUNB, CRIB 
(Coleção de Referência, Instituto Butantan), CZDP (Coleção Zoológica 
do Delta do Parnaíba), CZGB, FUNED, IBSP, IEPA, INPA, LZV, MBML, 
MCN, MCNR, MCP, MHNCI, MNRJ, MPEG, MTR (Miguel Trefaut 
Rodrigues, field series [to be transferred to MZUSP]), MZUESC, 
MZUFV, MZUSP, UFACF, UFC, UFG, UFMG-R, UFMT-R, UFPE, 
UFRGS, UFRN, ULBRA-TO (Centro Universitário Luterano de Palmas, 
Universidade Luterana do Brasil), URCA, ZUEC, ZUFMS, ZUFSM. 
Colombia: IAvH-R, ICN, MLS, MPUJ, UIS-R. Ecuador: MZUA, QCAZ. 
France: MNHN. Germany: ZSM. Paraguay: CZCEN, CZPLT, IIBP, 
MNHNP. Spain: DBAG. United Kingdom: NHMUK. Uruguay: MHMN, 
ZVC-R. United States of America: AMNH, CAS, FMNH, USNM.

For each specimen, we classified the condition of the tail tip: 
healed broken tail = 1, or intact tail = 0. Unhealed broken tail was 
treated as intact because we could not confirm whether breakage 
occurred before or after collection. We retrieved information on 
geographic coordinates of each collection site and kept in the da-
tabase only species that had a minimum of 30 examined specimens, 
and at least five specimens with healed broken tail. We also obtained 
data on nine covariates: (a) body size (snout-vent length, in mm), (b) 
life-stage (binary, 0 =  juvenile, 1 = adult), (c) sex (binary, 0 = male, 
1 = female), (d) activity pattern (categorical; diurnal, cathemeral, noc-
turnal), (e) habitat use (categorical, four dummy variables: fossorial, 
aquatic, terrestrial, arboreal), (f) biome in which the specimen was 
collected (categorical; sensu Dinerstein et al., 2017), (g) tropicality, 
informing whether the specimen was collected in a tropical or tem-
perate region (binary, 0 = temperate, 1 = tropical), (h) annual mean 
temperature (continuous, in °C), and (i) annual precipitation (contin-
uous, in mm). Temperature and precipitation data were extracted 
from the collection site of each specimen based on the Worldclim 
database v. 2.1 (Fick & Hijmans, 2017), at the spatial resolution of 5 
arc-min (c. 10 km). All variables were obtained at the specimen-level 

and refer to process occurring at the intraspecific-level, except for 
activity pattern and habitat use, which address processes occurring 
at the interspecific-level.

Whenever possible, life-stage and sex were determined through 
inspection of preserved specimens for sexually mature gonads and 
genital ducts or based on the minimum size of sexually mature male 
or female of each species. Life-stage was also inferred based on on-
togenetic variation in species colour pattern for three species in our 
dataset. We did not find information on the minimum size of sexually 
mature specimens of seven species (Amphisbaena bolivica, A. littora-
lis, Chironius bicarinatus, Ch. carinatus, Ch. gouveai, Ch. maculoventris, 
Echinanthera cephalostriata), and therefore used the size thresholds 
available for their respective sister species. Details on the approach 
used to determine sex and life-stage for each species are available 
in Supporting Information (Table S1). We kept in our database only 
specimens whose combination of species (44 binomials), life-stage 
(‘adult’ vs. ‘juvenile’), and sex (‘female’, ‘male’, or ‘unknown’ in a few 
cases) reached at least five specimens. Our final dataset included 
8189 specimens of 33 snake (n = 6940 specimens) and 11 amphis-
baenian (n  =  1249) species (Figure  1), from six families (see Data 
Availability Statement).

2.2  |  Standardization of predictor variables

To ease interpretation of predictor importance in subsequent analy-
sis, we rescaled covariates in the range of 0 and 1. Sex was coded 
as a binary variable (0 = male, 1 = female), but 10% of specimens in 
our dataset (n = 843) were unsexed, including most or all specimens 
(n = 184) of four amphisbaenian species (A. bolivica, A. kingii, A. lit-
toralis, A. munoai). To avoid discarding these unsexed species and 
to increase the statistical power of our analysis, we coded unsexed 
specimens as 0.5 (the midpoint between male and female code). The 
female proportion in our sample was 51.4% among all sexed speci-
mens (51.7% in snakes and 49.8% in amphisbaenians). Analysis was 
repeated without unsexed specimens and returned qualitatively 
identical results (see Table S3).

We aggregated the binary variables of habitat use into a verti-
cality metric (Oliveira & Scheffers, 2019), scored as: 0 = strictly fos-
sorial, 0.25  =  fossorial and terrestrial, 0.5  =  terrestrial or aquatic, 
0.75  =  terrestrial and arboreal, and 1  =  strictly arboreal. We also 
used species activity pattern to derive a diurnality metric, scored as 
0 = nocturnal, 0.5 = cathemeral, 1 = diurnal. Since we could not find 
any information on the activity pattern of the worm-lizard Cynisca 
leucura, we assumed it to be cathemeral to avoid discarding all 49 
specimens of this species.

All else being equal, large-sized specimens are often considered 
adults whereas the small-sized ones may represent juveniles. Thus, 
we could confound the potential effect of body size and life-stage on 
tail loss if the size-rescaling procedure had been applied to juvenile 
and adult specimens altogether. The same reasoning can be applied 
to sexual-size dimorphic species. Therefore, we rescaled body size 
between 0 and 1 separately for each combination of life-stage and 

 13652656, 2023, 2, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2656.13793 by U

FM
S - Fundacao U

niversidade Federal de M
ato G

rosso do Sul, W
iley O

nline L
ibrary on [07/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



328  |   Journal of Animal Ecology MOURA et al.

sex (e.g., adult males, adult females, juvenile males, juvenile females) 
of each species. Unsexed specimens were pooled together as ‘only 
adults’ or ‘only juveniles’ before the rescaling procedure. While our 
rescaling procedure removed interspecific variation in body size, it 
also allowed the assessment of predictors with a strong interspecific 
size-dependent component. For instance, interspecific body size in 
reptiles tend to increase with verticality (Harrington et al., 2018) and 
diurnality (Meiri, 2010), which is also true for our data (Figure S1). 
Additional results with body size rescaled across all species are pro-
vided in Supporting Information (Table S3).

Finally, we rescaled temperature and precipitation in the range 
of 0 and 1 across all localities, regardless of the species. Both climatic 
variables were log10 transformed before the rescaling procedure to 
reduce skewness. We examined the multicollinearity of the predic-
tors using the variance inflation factor—VIF (Kutner et al.,  2004). 
As none of our predictors reached high levels of multicollinearity 
(VIF > 5), we kept all of them for the subsequent analysis.

2.3  |  Statistical analyses

Our aim was to investigate how biological and environmental co-
variates affect the chance of tail loss in snakes and amphisbaenians. 
Although we were not interested in verifying the potential effects 
of species identity on the chance of tail loss, it was necessary to 
consider them in the analysis to control for pseudoreplication is-
sues (Hurlbert, 1984). Due to the potential existence of dependence 
among specimens within a same species, we analysed our binary re-
sponse variable (autotomy presence or absence) through a general-
ized linear mixed model (GLMM) with a binomial error distribution 
(Bolker et al.,  2009). While it is possible to investigate the prob-
ability of tail loss through phylogenetic logistic regressions (Ives & 
Garland, 2010), limitations in our phylogenetic data (see below) led 
to model convergence issues that prevent application of this method. 
Hence, we fitted a GLMM to the data using only ‘species’ as random 
effect for intercept only. We did not include genus, family, or other 

F I G U R E  1  Geographical distribution of examined species of snakes and amphisbaenians. Symbol shape indicates the specimen tail 
condition, whereas symbol colours reflect the major taxonomic group. Grayscale colours in the background represent biomes (sensu 
Dinerstein et al., 2017).
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higher-level taxonomies as random effects to avoid mixed models 
overfitting, which could lead to singularity issues—that is, random 
effect variances estimated as zero (Bates et al.,  2018; Matuschek 
et al., 2017).

We initially modelled the probability of tail loss as a function of 
the following fixed effects: (a) body size, (b) life-stage, (c) sex, (d) di-
urnality, (e) verticality, (f) biome, (g) tropicality, (h) temperature and 
(i) precipitation. We also included (j) taxonomic suborder (Serpentes 
vs. Amphisbaenia) as a fixed effect to evaluate potential differences 
in the probability of tail loss between snakes and amphisbaenians. 
We then applied a backward variable selection procedure based on 
the likelihood ratio test (LRT) to select only significant predictors. 
Briefly, we started the variable selection procedure by computing 
LRTs between the full model and all possible models with the re-
moval of one predictor (Zuur et al., 2009). At each iteration, we reg-
istered the LRT value and the respective p-value associated with a 
simplified model (i.e., dropping one predictor), and removed the less 
significant predictor until all remaining covariates yielded p ≤ 0.05. 
Computations were performed in R 4.1.0 using the lme4 package 
(Bates et al., 2015).

Although the use of random effects in GLMM minimizes de-
pendency issues among sampling units, the phylogenetic re-
latedness among species may produce positive phylogenetic 
autocorrelation in species traits (Freckleton, 2009), including the 
probability of tail loss. Also, the spatial proximity among collec-
tion sites may produce positive spatial autocorrelation in species 
distribution and ultimately affect trait spatial patterns (Kühn & 
Dormann, 2012). Therefore, we examined both the phylogenetic 
and spatial structure in the GLMM residuals of the final model 
through correlograms of Moran's I coefficients. This autocor-
relation metric measures how similar (positive values) or dissim-
ilar (negative values) sample pairs are, on average, based on their 
phylogenetic, temporal or spatial distance (Gittleman & Kot, 1990; 
Moran, 1950). Pair of samples can be divided in distance class in-
tervals to depict the metric behaviour across increasing distances 
via correlogram plots. Herein, we used 14 distance classes for 
both the phylogenetic and spatial correlograms.

Building of a phylogenetic correlogram requires a phyloge-
netic tree to extract the pairwise phylogenetic distance between 
samples. For this purpose, we used a subset of 100 fully sampled 
global phylogenies for squamates (Tonini et al., 2016) trimmed to 
include only the 44 species in our dataset. The snake Ch. gouveai 
was missing in Tonini's tree and was treated as Ch. bicarinatus, 
which was its former name before the taxonomic split (Entiauspe-
Neto et al., 2020). We added all specimens as polytomies at their 
respective species-level node and proceeded with computations 
of the phylogenetic correlogram for each tree, reporting the av-
erage results across the 100 trees. While our specimen-level 
phylogeny is necessary to verify phylogenetic autocorrelation in 
GLMM residuals, the presence of polytomies led to singularities 
in the phylogenetic covariance matrix, preventing the application 
of evolutionary model-based metrics of phylogenetic signal (e.g. 
Blomberg's K and Pagel's lambda). However, Moran's I is strongly 

correlated with evolutionary model-based metrics (Diniz-Filho 
et al., 2012), besides being particularly useful when model-based 
approaches are limited by the complexity of evolutionary pro-
cesses (Hardy & Pavoine, 2012). All analyses were performed in 
R 4.1.0 using the pgirmess (Giraudoux,  2021), phangorn (Schliep 
et al., 2017) and phylosignal (Keck et al., 2016) packages.

3  |  RESULTS

We analysed 8189 specimens of snakes and amphisbaenians of which 
1934 showed healed broken tails (23.6% of total). The autotomy fre-
quency was on average 33.4% among snake specimens and 18.7% 
across amphisbaenian specimens. Among snakes, we observed 
the lowest autotomy frequency in the Montpellier snake Malpolon 
monspesslanus (6.15%) and the highest autotomy frequency in the 
Gouvea's Sipo snake Ch. gouveai (75%). The amphisbaenians with the 
lowest and highest autotomy frequency were A. heterozonata (7.6%) 
and Cy. leucura (33.3%), respectively (Figures 2 and 3a). We did not 
find differences in probability of tail loss between snake and amphis-
baenian specimens (LRT, χ2 = 0.007, df = 1, p = 0.931).

Tail loss frequency in snake specimens was 14.6% for juveniles 
and 29.5% for adults. Among amphisbaenians, 6.5% of juveniles 
and 19.3% of adults showed lost tail (Figure  3b). Overall, adult 
specimens of limbless reptiles showed 258.3% (range 203.9%–
322.5%) more chances of having tail autotomy than juveniles (LRT, 
χ2 = 263.172, df = 1, p < 0.001, Table 1). Approximately 27.8% of 
female and 23.8% of male snakes had broken healed tails. For 
amphisbaenians, 16.5% of female and 19.3% of male specimens 
showed tail loss. The number of sexed specimens was almost 10-
fold higher in snakes than in amphisbaenians, so we recommend 
caution in interpreting sex effects for amphisbaenians separately. 
Female specimens of limbless reptiles showed on average 37.3% 
(range 21.5%–55.1%) more chances of tail loss than males (LRT, 
χ2  =  26.06, df  =  1, p < 0.001, Table  1). In addition, probability 
of tail loss was higher in large than small-sized specimens (LRT, 
χ2 = 127.128, df = 1, p < 0.001). For a same category of life-stage, 
sex and species, the largest specimen showed on average 275.3% 
(range 197.6%–373.5%) more chances of exhibiting tail loss rela-
tive to the smallest one (Table 1; Figure 4a).

The autotomy frequency varied among species with diurnal 
(22.6%), cathemeral (18.2%), and nocturnal (12.9%) activity pattern 
(Figure 3c), and the probability of tail loss increased with species' 
diurnality (LRT, χ2 = 4.839, df = 1, p = 0.027). Strictly diurnal spe-
cies showed on average 116.4% (11.2%–321.1%) more chances of 
tail loss than those strictly nocturnal (Table 1). The autotomy fre-
quency was smallest among species with fossorial habitat (15.8%), 
followed by those with aquatic (22.0%), terrestrial (32.4%) and ar-
boreal habitat (36.0%, Figure 3d). Strictly arboreal species showed 
on average 204.8% (12.5%–726.2%) more chances of tail loss than 
those strictly fossorial (LRT, χ2 = 4.536, df = 1, p = 0.033, Table 1).

Temperature also influenced the probability of tail loss (LRT, 
χ2 = 4.208, df = 1, p = 0.040, Table 1; Figure 4b). Limbless reptile 
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specimens from the warmest locality in our study (annual mean 
temperature 29.5°C) showed on average 121.8% (3.8%–373.9%) 
more chances of tail loss than specimens from the coldest local-
ity (3.5°C). We did not observe influence of precipitation (LRT, 
χ2 = 0.013, df = 1, p = 0.908), tropicality (LRT, χ2 = 0.691, df = 1, 
p = 0.406) and biome (LRT, χ2 = 12.627, df = 8, p = 0.125) on the 
chances of tail loss in limbless reptiles. The final model selected 
explained 22.5% of the variation in the data, with 14.7% of vari-
ation attributed to random effect (species identity) and 7.7% to 
fixed effects. Model residuals did not show spatial or phylogenetic 
structure (Figure S2).

4  |  DISCUSSION

Autotomy represents an interesting and peculiar defensive behav-
iour widespread across the tree of life. Among reptiles, the tuatara 

and several squamate species are known to perform tail autotomy 
(Bateman & Fleming, 2009; Crnobrnja-Isailović et al., 2016; Guedes 
et al., 2020). But the knowledge on the factors affecting the prob-
ability of tail loss among reptiles is still scarce, mostly restricted to 
lizards (Bustard, 1968; Kuo & Irschick, 2016; Lin et al., 2017; Pafilis 
et al., 2009; Pianka, 1970; Smith, 1996), and usually based on sin-
gle taxon approaches with restricted geographic scope. Based on 
a multitaxa framework and broad geographic coverage, we have 
demonstrated that while snakes showed higher autotomy frequency 
than amphisbaenians, there were no differences in the probability 
of tail loss between these taxa. The large unexplained variation in 
the probability of tail loss confirms the high complexity of autotomy 
ecology in limbless reptiles, but biological and environmental vari-
ables help explain tail breakage in these animals. For both groups 
combined, we found a higher probability of tail loss in adults than 
juveniles, females than males, and in large than small-sized speci-
mens. Chances of losing the tail increased with verticality, diurnality, 

F I G U R E  2  Autotomy frequency of snake and amphisbaenians species along the phylogeny. Photo credits: Diego J. Santana, Gustavo 
Pazmiño-Otamendi, Henrique C. Costa, Juan Carlos Sánchez, Juan David Fernández, Marcio Borges-Martins, Omar Torres Carvajal, Pedro H. 
Pinna, Raul Sales, Renato Gaiga, Santiago R. Ron, Weverton Azevedo.
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and temperature, but were unaffected by precipitation, tropicality 
and biome.

The increasing chance of tail loss in large-sized specimens is 
consistent with previous findings (Bateman & Fleming, 2009; Costa 
et al., 2014; Guedes et al., 2020). There are at least three nonmu-
tually exclusive explanations for the size-dependence of autotomy. 
First, small-sized specimens can show high mobility and be more 
likely to scape antagonistic encounters before they are attacked 

(Downes, 2002). Second, small-sized specimens have a high surface-
to-volume-ratio and can warm their bodies more quickly to a condi-
tion that allow fleeing with intact tails (Layne & Ford, 1984; Shine 
et al., 2000). This thermoregulatory benefit could operate synergis-
tically with high mobility to improve escape capability and reduce 
chances of autotomy. Third, chances of encountering predators, 
and thus of losing the tail, accumulate through an individual life-
time, with large-sized individuals being relatively older (Halliday & 
Verrell,  1988). Within this context, specimens could have experi-
enced autotomy in the past and grown (survived) to reach a larger 
size (Pike et al., 2008). Because neither the temporal aspect of auto-
tomy nor the thermoregulatory constraints can be detected through 
preserved specimens, the mechanisms underlying size-dependence 
of autotomy remain an open question to ecological experiments.

After decoupling the influence of body size from life-stage, we still 
found lower chances of tail loss in juvenile than adult specimens. This 
size-independent variation in the probability of tail loss reinforces the 
role of ontogenetic behavioural differences in snakes and amphisbae-
nians. For instance, it may be possible that injury followed by death 
reduces autotomy frequency among juveniles (Willis et al., 1982). If 
collection of specimens in nature occurs at random regarding life-
stage, one could expect to sample relatively more juveniles in species 
with low juvenile autotomy frequency, that is, more juveniles survive 
to be sampled. However, further inspection of our dataset did not 
indicate any relationship between juvenile proportion in the sample 
and autotomy frequency (Figure S3). Alternatively, juveniles can trade 

F I G U R E  3  Proportion of snake and amphisbaenian specimens with autotomised tails. The frequency of tail loss is shown across (a) 
species, and categories of (b) life-stage and sex, (c) activity pattern, (d) habitat use and (e) biomes. The number of specimens in each category 
is shown on the right side of the panel. Bluish colours denote data on snakes and reddish colours refer to amphisbaenians.
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TA B L E  1  Generalized mixed effect model for the probability of 
tail loss among snake and amphisbaenian specimens. Likelihood 
ratio tests (LRT) were applied in a backward selection procedure 
starting with the full model. Predictor coefficients (Coef., lower 
CI and upper CI) are shown as odds ratio (instead of logit scale). 
Coefficient values >1 indicate the proportional increase in chances 
of tail loss (odds ratio) if the respective predictor value changes 
from 0 (min) to 1 (max), and the inverse occurs for coefficient 
values <1. Predictors are not significant if confidence intervals 
encompass the value of 1

Predictor LRT p Value Coef. Lower CI Upper CI

Life-stage 263.172 <0.001 3.583 3.039 4.225

Body size 127.128 <0.001 3.753 2.976 4.735

Sex 26.060 <0.001 1.373 1.215 1.551

Verticality 4.536 0.033 3.048 1.125 8.262

Diurnality 4.839 0.029 2.164 1.112 4.211

Temperature 4.208 0.040 2.218 1.038 4.739
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activity time to bask and forage for safety (Webb & Whiting, 2005), 
and/or select suboptimal microhabitats to avoid predators (Webb 
et al., 2009), showing low propensity to tail autotomy in early lifespan. 
Juveniles may also use the tail for other purposes, such as luring be-
haviour to attract prey (Heatwole & Davison, 1976), or invest in differ-
ent defensive behaviours rather than autotomy, such as dichromatism 
or mimicry (Costa et al., 2013), making them less likely to shed their 
tails during antagonistic encounters.

Female specimens showed higher chances of tail loss relative to 
males, particularly among snakes. All else being equal, the sex with 
greater relative tail length would have higher chances of having 
the tail attacked. The fact that relative tail length is male-biased in 
snakes and amphisbaenians (Santos,  2013; Shine et al.,  1999), but 
autotomy frequency was female-biased in this study, reinforces 
the existence of a sex-related mechanism underlying this defensive 
behaviour. In our sample, more than half of snake species (and one 
amphisbaenian) showed female-biased SSD, whereas about one-
tenth had male-biased SSD—the remaining species did not show 
significant SSD (Figure S4). Since chances of tail loss increase with 
body size, the sex effect on autotomy could result from female-
biased SSD (e.g., Figure 5a,c). However, we bypassed this difficulty 
by rescaling body size within each sex and demonstrated the size-
independent effect of sex on autotomy. One possible explanation is 
the reduced male survival to tail attacks due to hemipenis damage 
(Placyk & Burghardt, 2005). If so, species showing female-biased au-
totomy could also exhibit female-biased sex ratio as an indicative of 
reduced survival of autotomised males. Assuming that the female 
proportion in our sample represents the species sex-ratio found in 
nature, we did not observe relatively fewer males in snake and am-
phisbaenian species with female-biased autotomy, although there 
may be a trend in snakes (Figure  5b,d). Alternatively, males may 
show a low willingness to autotomise since an incomplete tail can 
reduced mating success (Shine & Shetty, 2001; Shine et al., 1999), or 

resource-driven behavioural differences can increase the exposure 
of a particular sex to predators (Lee et al., 2019), and ultimately raise 
autotomy frequency (Bateman & Fleming, 2011).

We confirmed our expectations about the influence of activity 
pattern and habitat use on the chances of tail autotomy, and also a 
potential risk-balancing mechanism between diurnality and verti-
cality. On the one hand, most predators of snakes and amphisbae-
nians are diurnal squamates and visually oriented birds (Hansen 
et al., 2019; Meiri, 2018; Schalk & Cove, 2018; Wilman et al., 2014). 
On the other hand, arboreal species have limited access to shelters 
and are more exposed to predators than terrestrial or fossorial 
species (Ferreira & Faria, 2021; Martins et al., 2008). Therefore, by 
simultaneously showing arboreality and diurnality, snake species 
would face the worst of both worlds. The risk-balance between 
diurnality and verticality can be a mechanism to reduce predation 
pressure, which is supported by the fact that most arboreal snakes 
are nocturnal (Harrington et al., 2018). But if fossoriality and noc-
turnality allow species to reduce predation pressure, why is not 
such trait association more widespread among serpentiform squa-
mates? One possibility is that fossoriality could increase inter-
specific competition for food resources. Competition is stronger 
among tropical snake assemblages, and in the absence of trophic 
partitioning, competitive exclusion can occur (Luiselli,  2006). 
Another reason for the rarity of fossorial nocturnal snakes may 
involve trade-offs among other niche dimensions (trophic, spatial, 
and temporal) and/or phylogenetic constraints limiting explora-
tion of ‘niche space’, which has been revealed in lizards (Pelegrin 
et al.,  2021). Improving data availability on activity pattern for 
snakes and amphisbaenians (Etard et al., 2020) should allow more 
thorough analyses on the adaptive value of different trait associa-
tions in serpentiform squamates.

Another interesting finding was the higher probability of tail loss 
in snakes and amphisbaenians from warmer regions. For instance, 

F I G U R E  4  Predictors effect on the probability of tail loss in snakes and amphisbaenians. (a) Body size is normalized in the range of 0 and 1 
separately for each species and life-stage. (b) Annual average temperature, values back transformed Celsius scale to facilitate interpretation. 
Internal boxplots show Kruskal–Wallis tests of differences in predictor median across specimens with and without tail autotomy.
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movement and activity of snakes and amphisbaenians can either 
increase with temperature (Abe, 1984; Eskew & Todd, 2017; López 
et al., 2002), or specimens from warmer regions can support higher 
temperatures before seeking thermal refuges (Díaz-Ricaurte & 
Serrano,  2020), leading to longer activity time and higher chances 
of encountering predators. If so, autotomy events could be more 
common during warmer seasons. Although preserved specimens 
are useful to reveal seasonal activity patterns (Marques et al., 2001), 
it is not possible to assess seasonal variation in autotomy through 
preserved specimens since the tail loss event (if present) cannot be 
linked to the specimen collection date. Alternatively, the temperature 
can affect physiological processes that increase the ease of autot-
omy (Brattstrom, 1965; Daniels, 1984), although thermal effects on 
autotomy can also be bimodal (Bustard, 1968). Warmer regions can 
also have higher predation pressure, as already evidenced for lower 
latitudes and elevations (Roslin et al., 2017), which could impose risks 
not necessarily related to the amount of time a species remains active.

Although we have considered tail loss as a proxy for predation 
pressure, we acknowledge that at least two other interpretations are 
possible. First, elevated frequency of tail loss can imply an increase 
in intraspecific competition. Despite evidence supporting the role of 
competition for autotomy in some lizards (Itescu et al., 2017; Jaksić & 
Busack, 1984; Passos et al., 2013), there is virtually no confirmation 
for snakes or amphisbaenians. The observation of ‘mating balls’—
including tail wrestling—(Madsen & Shine, 1993; Shine et al., 2003) 
and other male–male combats in several snakes, but with no broken 
tails reported (Shine, 1978, 1994), suggest a somewhat limited con-
tribution of intraspecific aggression driven autotomy, at least among 
snakes. Second, high autotomy frequency can result from low pred-
atory efficiency, where eventually more prey could survive non-
lethal attacks (Bateman & Fleming,  2011; Jaksić & Greene,  1984; 
Medel et al., 1988). Most available evidence in decoupling the roles 
of autotomy in squamates concerns insular lizards, where lower 
autotomy frequency was often attributed to efficient predators 

F I G U R E  5  Relationship between autotomy frequency, sexual size dimorphism, and sample sex-ratio in snake and amphisbaenian species. 
Per species values were computed using (a, b) all available sexed specimens, or (c, d) only sexed adults. Log ratio (LR) of autotomy frequency 
of female to male >0 indicates more autotomy in females than males. R denotes the Pearson correlation coefficient.
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such as raptors and small carnivores (Bateman & Fleming,  2011; 
Lin et al., 2017; Medel et al., 1988), and higher tail loss frequency 
was associated to less efficient predatory lizards and snakes (Itescu 
et al., 2017; Medel et al., 1988; Pafilis et al., 2009). For instance, au-
totomy frequency in snake populations shows a positive association 
with predator richness (Vidal-García et al., 2011). Considering that 
squamates are mainly preyed upon by other reptiles instead of avian 
and mammalian predators (Schalk & Cove, 2018), tail autotomy fre-
quency may indeed reflect predation pressure, at least by specific 
kinds of predators.

Preserved specimens have been used to increase our knowledge 
on multiple aspects of species ecology, including diet and reproduc-
tive biology, malformation, and host–parasite interactions (Galbreath 
et al.,  2019; Hilton et al.,  2021; Johnson et al.,  2003). Herein, we 
have shown how preserved specimens of snakes and amphisbae-
nians can be model organisms for research on autotomy and preda-
tion pressure. We highlight the role of size-independent effects of 
ontogeny and sex in shaping behavioural responses of limbless rep-
tiles to potential predators, besides showing a potential risk-balance 
mechanism between the spatial (habitat use) and temporal (activity 
pattern) niche dimensions as a mechanism to reduce predation pres-
sure. Our findings suggest that the temperature effect on autotomy 
is likely related to mechanisms such as the easiness of autotomy or 
increased predation in warmer regions. Additional research using 
preserved specimens with high resolution spatial and temporal data 
will allow the assessment of fine-scale determinants of biotic inter-
actions, and ultimately uncover new pages of the tale on lost tails. 
We hope this research will shed light on the importance of museums 
and scientific collections as vital repositories of long-term biodiver-
sity data (Meineke & Daru, 2021), which can be used to investigate a 
plethora of patterns and underlying mechanisms in many disciplines, 
including here research on biodiversity and global change.
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