ZOOLOGIA 36: e25662

The advertisement call of the phytotelm-breeding Melanophryniscus xanthostomus (Anura: Bufonidae)

Sarah Mângia \mathbb{D}^{1}, Diego José Santana ${ }^{\left({ }^{1}\right)}$, Lucas Ribeiro Mariotto ${ }^{\left.()^{2}\right)}$
${ }^{1}$ Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, Laboratório de Zoologia, Av. Costa e Silva, s/n, Cidade Universitária, 79070-900, Campo Grande, MS, Brazil
${ }^{2}$ Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Biologia. Avenida Bandeirantes, 3900, Monte Alegre, 14040-901, Ribeirão Preto, SP, Brazil
Corresponding author: Lucas Ribeiro Mariotto (lucasrmariotto@gmail.com)

http://zoobank.org/1 F5 BD8E4-DB3D-4ACD-B993-6D318A60EB42

Abstract

Vocalizations are often useful for understanding taxonomic relationships among anuran species. Despite this usefulness, vocalizations are described in only nine of 29 in Melanophryniscus Gallardo, 1961. Here we describe the advertisement call of Melanophryniscus xanthostomus Baldo, Bornschein, Pie, Ribeiro, Firkowski \& Morato, 2015 of a population from Serra Dona Francisca, municipality of Campo Alegre, state of Santa Catarina, Brazil. The advertisement call (of three males, total of 17 calls) comprises two segments (the first with short and single notes, followed by a multi-pulsed note), with a duration of $12.194-20.986 \mathrm{~s}$, and dominant frequency of $3101-3618 \mathrm{~Hz}$ (first and second segments combined). The advertisement call of M. xanthostomus differs from its congeners mostly by the higher number of pulses in the second segment (294-1033; from 16 to 321 in the other Melanophryniscus species), except Melanophryniscus krauczuki Baldo \& Basso, 2004 (1018-1502 pulses in the second segment). This is the first described call of a phytotelm breeding Melanophryniscus, but it presents the same prototype (a compound call formed by two segments, the first composed of short notes followed by a long trill) of its congeners not-phytotelm breedings. This might indicate the advertisement call of Melanophryniscus as a conserved trait and thus can be considered diagnostic for the genus.

KEY WORDS. Atlantic Forest, bioacoustic, call description, natural history, vocalization.

INTRODUCTION

Vocalizations are imperative to solve major taxonomic problems in many distinct anuran groups (Haddad and Pom-bal-Jr 1998, Carvalho and Giaretta 2013, Pansonato et al. 2014). The most common vocalization among anuran repertoire is the advertisement call (Wells 2007), which is species-specific and therefore useful for species identification (Gerhardt and Davis 1988). The advertisement calls of many species-groups have a prototype pattern, well diffused among species - e.g., Microhylidae, Bufonidae (Heyer 1971, Martin 1972) -, and can be the synapomorphic characteristic for lineages.

Melanophryniscus Gallardo, 1961 toads (29 valid species) are distributed in South America (Argentina, Bolivia, Brazil, Paraguay, and Uruguay) (Frost 2018). In phylogenies, the genus has been recovered as the sister taxon of all other bufonids (e.g., Frost et al. 2006, Van Bocxlaer et al. 2010, Peloso et al. 2012), and its monophyly is supported by morphological, biochemi-
cal, behavioral, and molecular evidence for adults (McDiarmid 1971, Daly et al. 2007, Peloso et al. 2012) and tadpoles, based in a comparative description of the larvae of 23 Melanophryniscus species (Larson et al. 2003, Baldo et al. 2014). The genus is traditionally grouped into three species groups (M. tumifrons, M. stelzneri, and M. moreirae species groups) based mainly on morphology and coloration patterns (Caramaschi and Cruz 2002). Some species of Melanophryniscus described after 2003 have not been assigned to any group.

The toad Melanophryniscus xanthostomus Baldo, Bornschein, Pie, Ribeiro, Firkowski \& Morato, 2015 was recently described based on individuals from Serra do Quiriri, Campo Alegre, Condomínio Vale dos Lagos and Reserva Particular do Patrimônio Natural Caetezal, Joinville and Morro do Boi, Corupá, municipalities from the state of Santa Catarina, Brazil, and was not assigned to any species groups. Some information about the natural history of M. xanthostomus is provided in the original description of the species (Bornschein et al. 2015),
including data of vocalization sites, and period that males were found calling (from September to February). However, the advertisement call was not described.

Given the rapid increase of the species description in the genus, the search for useful characteristics, as vocalizations, is crucial important to help resolve their taxonomy and to test evolutionary hypothesis. However, from the 29 species of Melanophryniscus, only nine have the advertisement call described (see Caldart et al. 2013, Duré et al. 2015). Because anuran advertisement calls are species-specific (Gerhardt and Davis 1988) and therefore, are useful in the distinction of the species and an important character for taxonomy (Duellman and Trueb 1986), in the present study, we described the advertisement call of M. xanthostomus for a population from Serra Dona Francisca, Campo Alegre, Santa Catarina, Brazil. We also compared the calls of M. xanthostomus with the nine other species of Melanophryniscus.

MATERIAL AND METHODS

We recorded advertisement calls of three males (FURB 22851 - SVL 18.6 mm, FURB 22822 - SVL 19.7 mm, FURB 22713 - SVL 16.9 mm, total of 17 calls, Figs 1-3) at Serra Dona Francisca ($-26^{\circ} 12^{\prime} 52.54^{\prime \prime} \mathrm{S}, 49^{\circ} 13^{\prime} 04.92^{\prime \prime}$ W), Campo Alegre, Santa

Catarina, on November 3 ${ }^{\text {rd }}$, 2013. Calls were recorded with a Marantz PMD661 digital recorder coupled with a YOGA HT-81 directional microphone. Recordings were made around midnight (air temperature $18.8{ }^{\circ} \mathrm{C}$, humidity 65%). We digitalized the recordings at 44.1 kHz , resolution of 16 bits. The three specimens were collected and deposited on the Zoology Collection of Universidade Regional de Blumenau (FURB), Santa Catarina, Brazil, under the numbers above.

We analyzed calls in RAVEN PRO 1.5 for Mac (Bioacoustics Research Program 2012) and constructed audio spectrograms in R using the package seewave (Sueur et al. 2008) with the following parameters: FFT window width $=256$, Frame $=100$, Overlap $=75$, and flat top filter. We analyzed acoustic parameters normally used for species of Melanophryniscus: dominant frequency (Hz), call duration (sec), call interval (sec), first segment duration (sec), second segment duration (sec), interval between first and second segment (sec), number of short notes, duration of short notes (sec), interval between short notes (sec), note rate of the first segment (the ratio of the absolute number of notes and the absolute duration of the segment), pulse number of the second segment, and pulse rate of the second segment (the ratio of the absolute number of pulses and the absolute duration of the segment). Terminology of call descriptions follows Köhler et al. (2017).

Figures 1-3. Specimens of Melanophryniscus xanthostomus: dorsal view (1) and ventral view (2) from FURB 22851 specimen and FURB 22713 specimen in life (3).

We compared the advertisement call of M. xanthostomus with nine congeners, although those descriptions did not include all the call parameters that we analyzed (see references in Table 1).

RESULTS

The advertisement call of M. xanthostomus is a compound call formed by two segments (Table 1, Fig. 4-6). The first segment is composed by short and single notes (13 ± 4; range $7-20$ notes), with a duration of $0.011-0.057 \mathrm{~s}(0.027 \pm 0.010 \mathrm{~s})$, and interval duration of $0.242-0.774 \mathrm{~s}(0.325 \pm 0.109 \mathrm{~s})$ between the short
notes, with a pulse rate of $0.002-0.004 \mathrm{~s}(0.003 \pm 0.001 \mathrm{~s})$. The duration of the first segment is $1.774-6.794 \mathrm{~s}(4.115 \pm 1248.98 \mathrm{~s})$. The second segment consists of a multi-pulsed note (a long trill) of 6.278-18.318 s of duration ($14.189 \pm 2979.77 \mathrm{~s}$), with 294-1033 pulses (685 ± 179.59 pulses), and pulse rate of $0.04-0.06$ pulses per second ($0.05 \pm 0.01 \mathrm{pulses} / \mathrm{s}$). The advertisement call (first and second segments combined) presents a duration of 12.194-20.986 $\mathrm{s}(18.577 \pm 2443.70 \mathrm{~s})$, and dominant frequency of $3101-3618 \mathrm{~Hz}$ ($3395 \pm 180.32 \mathrm{~Hz}$). The interval duration between the first and the second segments is $9.258-221.673 \mathrm{~s}(82.949 \pm 78878.03 \mathrm{~s})$.

The advertisement call of M. xanthostomus is emitted with both segments in sequence, not only the first or the second

Figures 4-6. Advertisement call of Melanophryniscus xanthostomus (LM380, SLV 18.6 mm): (4) oscillogram and spectogram of one call; (5) oscillogram and spectogram of three notes from the first segment; (6) oscillogram and spectogram of 28 pulses from the second segment.
Table 1. Comparison of temporal and spectral parameters of the advertisement call of Melanophryniscus xanthostomus and nine other congeneric species. Values are means with the range in parentheses. (a) Air temperature; (w) water temperature.

Call parameters	M. xanthostomus ${ }^{\text {' }}$	M. atroluteus ${ }^{2}$	M. atroluteus ${ }^{3}$	M. cupreuscapularis ${ }^{4}$	M. dorsalis ${ }^{5}$	M. dorsalis ${ }^{6}$	M. klappenbach ${ }^{\text {P }}$
Calls (n)	17 calls, 3 males	12 calls, 1 male	14 calls, 2 males	20 calls, 4 males	3 calls, 1 males	7 calls, 2 males	11 calls
Temperature (${ }^{\circ} \mathrm{C}$)	18.8 (a)	17.0 (w)	21.5 (a)	22.0 (a)	21.0 (a)	21.0 (a)	22.0-24.0 (a)
Dominant frequency (Hz)	3395 (3101-3618)	3000	(1900-3100)	2270 (2176-2357)	(2600-3200)	(2300-3200)	1900
Call duration (s)	18.577 (12.194-20.986)	7.523 (5.090-10.350)	3.700 (3.400-4.200)	3.023 (1.120-6.660)	-	-	0.507 (0.292-0.652)
Inter-call interval (s)	82.949 (9.258-221.673)	8.489 (2.922-7.954)	-	2.100 (1.350-2.780)	-	-	-
$1^{\text {st }}$ segment duration (s)	4.115 (1.774-6.794)	4.143 (2.575-5.360)	2.500 (1.800-3.200)	2.688 (0.780-6.390)	3.700 (3.500-4.100)	1.890 (1.000-2.300)	-
$2^{\text {nd }}$ segment duration (s)	14.189 (6.278-18.318)	3.012 (1.832-4.303)	1.100 (0.500-1.400)	0.23 (0.19-0.27)	2.37 (2.0-2.6)	1.50 (0.6-2.2)	-
interval between segments (s)	0.265 (0.054-0.609)	0.026 (0.003-0.079)	-	0.100 (0.040-0.160)	-	-	-
Number of notes of $1^{\text {tt }}$ segment	13 (7-20)	20.6 (15-25)	17.6 (11-26)	10 (6-17)	19 (18-20)	13 (6-18)	3-4
$1^{\text {st }}$ segment notes duration (s)	0.027 (0.011-0.057)	0.102 (0.006-0.174)	-	0.020 (0.010-0.040)	0.054 (0.030-0.065)	0.042 (0.020-0.050)	-
inter-notes interval of $1^{\text {st }}$ segment (s)	0.325 (0.242-0.774)	0.091 (0.006-0.229)	(0.085-0.100)	0.270 (0.090-3.150)	0.153 (0.130-0.190)	0.140 (0.080-0.170)	-
Notes per s of $1^{\text {st }}$ segment	0.003 (0.002-0.004)	-	(8-9)	-	-	(4-7)	-
Number of pulses $2^{\text {nd }}$ segment	685.000 (294.000-1033.000)	222.380 (139.000-321.000)	87.600 (45.000-116.000)	20.400 (16.000-24.000)	161.000 (152.000-173.000)	122.000 (54.000-162.000)	43.000 (26.000-53.000)
Pulses per s of $2^{\text {nd }}$ segment	47.960 (40.550-56.700)	75.440 (74.310-76.800)	(85.000-95.000)	88.950 (96.770-84.030)	(62.000-74.000)	(74.000-78.000)	86.000 (80.340-88.910)

Table 1. Continued.

Call parameters	M. krauczucki ${ }^{8}$	M. montevidensis ${ }^{9}$	M. pachyrhynus ${ }^{10}$	M. rubriventris ${ }^{11}$	M. rubriventris ${ }^{12}$	M. rubriventris ${ }^{13}$	M. stelzneri ${ }^{14}$	M. stelzneri ${ }^{15}$
Calls (n)	5 calls, 1 male	14 calls, 2 males	12 calls, 6 males	12 calls, 4 males	12 calls, 4 males	12 calls, 4 males		
Temperature (${ }^{\circ} \mathrm{C}$)	17(w)	24(a)	16-17(a) 16-18(w)	19(a)	19(a)	19(a)		20.5(a)
Dominant frequency (Hz)	3300	(2100-2800)	2668 (2261-2932)	$\begin{aligned} & 1^{\text {st }} \text { seg. } 1788 \text { (1704-1846) } \\ & 2^{\text {nd }} \text { seg. } 1734 \text { (1653-1789) } \end{aligned}$	$\begin{aligned} & 1^{\text {th }} \text { seg. } 1721(1515-1845) \\ & 2^{\text {dd }} \text { seg. } 1687(1535-1783) \end{aligned}$	$\begin{aligned} & 1^{\text {th }} \text { seg. } 1841(1754-1944) \\ & 2^{\text {nd }} \text { seg. } 1782(1705-1869) \end{aligned}$	(1600-2600)	$\begin{aligned} & \text { FH }(2200-2600) \\ & 2 H(4600-5200) \\ & 3 H(7000-7600) \end{aligned}$
Call duration (s)	32.699 (25.013-36.646)	-	37.070 (6.640-75.200)	2.710 (1.400-3.250)	3.150 (2.030-4.170)	2.130 (1.320-3.790)	7.300 (4.500-9.300)	
Inter-call interval (s)	21.988 (18.196-25.737)	-	-	-	-	-	-	
${ }^{\text {st }}$ segment duration (s)	2.031 (1.128-3.160)	1.980 (1.000-4.500)	4.440 (1.850-7.670)	0.912 (0.296-1.489)	1.438 (0.606-2.318)	0.617 (0.231-1.449)	4.200 (2.500-6.300)	
$2^{\text {nd }}$ segment duration (s)	30.455 (23.784-33.408)	1.580 (1.200-2.000)	25.270 (4.790-45.750)	1.365 (0.691-1.648)	1.413 (0.558-2.251)	1.323 (0.772-2.125)	2.100 (1.800-2.400)	0.500
interval between segments (s)	0.258 (0.085-0.827)	-	-	0.435 (0.212-0.929)	0.299 (0.111-0.404)	0.187 (0.210-0.524)	-	
Number of notes of $1^{\text {th }}$ segment	8.6 (6-12)	17 (7-28)	17 (8-28)	3.8 (2-7)	4.7 (2-8)	2.9 (1-6)	26 (12-36)	
${ }^{\text {st }}$ segment notes duration (s)	0.009 (0.005-0.023)	0.0313 (0.021-0.039)	0.017 (0.010-0.026)	0.039 (0.042-0.048)	0.044 (0.033-0.043)	0.044 (0.035-0.050)		0.110
nter-note interval of $1^{\text {st }}$ segment (s)	0.217 (0.147-0.837)	0.103 (0.078-0.130)	0.234 (0.082-0.322)	0.285 (0.209-0.496)	0.316 (0.171-0.987)	0.268 (0.157-0.254)	(0.110-0.130)	0.090
Notes per s of $1^{\text {st }}$ segment	-	-	3.900 (2.900-4.300)	-	-	-		(5.000-6.000)
Number of pulses $2^{\text {nd }}$ segment	1298.500 (1018-1502)	147 (100-192)	818 (164-1382)	-	-	-		
ulses pers of $2^{\text {nd }}$ segment	43.670 (42.350-44.950)	(85.000-95.000)	$\begin{gathered} 32.800(30.200- \\ 34.300) \end{gathered}$	54.000 (51.000-58.000)	48.000 (45.000-61.000)	57.000 (54.000-64.000)	(65.000-85.000)	70.000

Speciemens from: ' ${ }^{1}$ Campo Alegre, Santa Catarina, Brazil (present study); ${ }^{2}$ Misiones, Argentina (Baldo and Basso 2004); ${ }^{3}$ São José dos Ausentes, Rio Grande do Sul, Brazil (Kwet and Miranda 2001); ${ }^{4}$ Corrientes, Argentina (Duré et al. ${ }^{2015}$); 2015); ${ }^{5}$ Laguna, Santa Catarina, Brazil (Kwet et al. 2005); ${ }^{\circ}$ Torres, Rio Grande do Sul, Brazil (Kwet et al. 2005); ${ }^{\text {PParaguay (}}$ Córdoba, Argentina (Kwet and Miranda 2001); ${ }^{15}$ Santa Rosa de Calamuchita, Córdoba, Argentina (Barrio 1964).
segment separately. In November 2013, we observed six males calling on bromeliads at ground level, in two forest fragments at 1027 m altitude. Most toads can be found in bromeliads closer to the ground, which were usually under 1 m high, as well as inside those that fell in the leaf litter. Also we found one female near an egg clutch at the fence of pitfall trap. In January 2014, we registered only one male calling during the fieldworks. No individuals were capture in pitfall traps in the forest fragment. Other species calling along with M. xanthostomus in the forest were Fritizana sp., Cycloramphus bolitoglossus (Werner, 1897) and Adenomera araucaria Kwet \& Angulo, 2002.

DISCUSSION

The natural history of the phytotelma-using Melanophryniscus species is very different from their congeners, because of the reproductive mode and tadpole morphology (Langone et al. 2008, Baldo et al. 2014), and the type of habitats they inhabit (other species occurs and lay the eggs in freestanding water) (Kwet et al. 2010, Maneyro et al. 2017). Concerning its call parameters, this species showed some temporal and spectral characteristics that suggest some acoustic adaptations for forest environments, such as described in the Acoustic Adaptation Hypothesis (AAH) (Morton 1975, Erdtmann and Lima 2013). According this hypothesis, calls in forest environments will: (1) be longer in length, (2) have a lower repetition rate, (3) have lower minimal, maximal and dominant frequencies and (4) have a smaller frequency bandwidth (Morton 1975).

The advertisement call of M. xanthostomus differs from its congeners by the higher number of pulses in the second segment (294-1033; from 16 to 321 in the other Melanophryniscus species), except from Melanophryniscus krauczuki Baldo \& Basso, 2004 (1018-1502 pulses in the second segment) and M. pachyrhynus (Miranda-Ribeiro, 1920) (164-1382 pulses in the second segment). The lowest pulse rate of the second segment (40.55-56.70 pulses per second) differs M. xanthostomus from most of its congeners (62 to 95 pulses per second in M. atroluteus (Miranda-Ribeiro, 1920), M. cupreuscapularis Céspedez \& Alvarez, 2000, M. dorsalis (Mertens, 1933), M. klappenbachi Prigioni \& Langone, 2000, M. montevidensis (Philippi, 1902), M. stelzneri (Weyenbergh, 1875), except from M. krauczuki, M. pachyrhynus, and M. rubriventris (Vellard, 1947) (42.35-44.95, 3020-34.30, 45.00-64.00 pulses per second, respectively). The total call and the second segment durations of M. xanthostomus ($12.19-20.99 \mathrm{~s}, 6.28-18.32 \mathrm{~s}$, respectively) are only shorter than M. krauczuki (25.01-36.65 s, 23.78-33.41 s). Melanophryniscus pachyrhynus reaches higher values of call and second segment durations (6.64-75.20 s, 4.79-45.75 s) than M. xanthostomus, however, the values overlap. The higher number of notes in the first segment (7-20) of the advertisement call of M. xanthostomus differs from M. klappenbachi (3-4) and M. rubriventris (2-7). The dominant frequency is higher (3395 Hz) and the amplitude range is lower $(\pm 500 \mathrm{~Hz})$ than other species of Melanophryniscus, except from M. krauczuki (dominant frequency 3300

Hz), M. cupreuscapularis (amplitude $\pm 200 \mathrm{~Hz}$) and M. rubriventris (amplitude between $100-300 \mathrm{~Hz}$). The interval between calls is longer in M. xanthostomus (82.949 s) than other species. The other acoustic parameters, such as first segment duration and interval between segments, varies among species of the genus, but all the values overlap. Even with some acoustic traits that corroborate with the AAH, we observed that the advertisement calls are similar among Melanophryniscus species.

Species of Melanophryniscus have an advertisement call composed of short notes followed by a long trill (e.g., Kwet et al. 2005, Caldart et al. 2013, Duré et al. 2015), as we observed to M. xanthostomus. Most species, including M. xanthostomus, have the first segment composed by one group of short notes, except M. cupreuscapularis and M. dorsalis (from Laguna, Santa Catarina, Brazil), which have two or more groups of short notes, separated by a higher distance than that among notes (Kwet et al. 2005, Duré et al. 2015). Melanophryniscus xanthostomus emit the advertisement call with both segments in sequence as described for other species of the genus (see Duré et al. 2015), except M. pachyrhynus, that also emit calls with the second segment (the trill) alone (Caldart et al. 2013). The functional differences of the two segments of the advertisement call of Melanophryniscus species might be investigate in future bioacoustic and behavior studies of these species.

Thus, it is remarkable that the advertisement call of M. xanthostomus presents the same prototype (a compound call formed by two segments, the first composed of short notes followed by a long trill) of its congeners not-phytotelm breedings. Biological concerns, such as species recognition, sexual selection, physiological traits or body size (Gerhardt 1991, Bevier et al. 2008), may explain the similarities of advertisement calls among Melanophryniscus species, while some evidences showed contrary pattern expected for AAH. Some amphibians species showed larger body mass and lower call frequencies in open-land environments (Bevier et al. 2008), such as we detected for M. xanthostomus (higher dominant frequency associated to forest environment). But the open land and stream inhabitant M. krauczuki (Baldo and Basso 2004) also showed higher dominant frequency, suggesting other environment variables may be associated, such as stream noise. However, the lack of phylogenetic hypothesis for the genus and other described calls from phytotelm breeding Melanophryniscus, makes it hard to test this hypothesis at this moment. Thus, future phylogenetic comparative studies, testing the AAH, could bring new explanations for the evolutinary acoustic patterns of Melanophryniscus. Once this is the first described call of a phytotelm breeding Melanophryniscus, we highlight the need to know the call of the other species with the same reproductive mode in order to confirm this proposal.

ACKNOWLEDGMENTS

We are thankful to all friends involved directly and indirectly to this work, specially to Carlos E. Conte, Renato C.

Nali and Daniel Son for suggestions and the help during the fieldworks. We are thankful to H.L. Doerrier and C.T. Ferriolli for the English editing. To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq processes 132559/2012-9, 167888/2014-5 and 311492/2017-7), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação Boticário for the grants. To the SISBIO (\#35005) and FUNDEMA (\#013/12-GEMAP) for the research licenses.

LITERATURE CITED

Baldo D, Basso NG (2004) A new species of Melanophryniscus Gallardo, 1961 (Anura: Bufonidae), with comments on the species of the genus reported for Misiones, Northeastern Argentina. Journal of Herpetology 38: 393-403.
Baldo D, Candioti FV, Haad B, Kolenc F, Borteiro C, Pereyra MO, Zank C, Colombo P, Bornschein MR, Sisa FN, Brusquetti F, Conte CE, Nogueira-Costa P, Almeida-Santos P, Pie MR (2014) Comparative morphology of pond, stream and phy-totelm-dwelling tadpoles of the South American Redbelly Toads (Anura: Bufonidae: Melanophryniscus). Biological Journal of the Linnean Society 112: 417-441. https://doi. org/10.1111/bij. 12296
Barrio A (1964) Peculiaridades del canto nupcial de Melanophryniscus stelzneri (Weyenbergh) (Anura: Brachicephalidae). Physis 24: 435-437.
Bevier CR, Gomes FR, Navas CA (2008). Variation in call structure and calling behavior in treefrogs of the genus Scinax. South American Journal of Herpetology 3(3): 196-206. https://doi.org /10.1670/144-03A
Bornschein MR, Firkowski CR, Baldo D, Ribeiro LF, Belmon-te-Lopes R, Corrêa L, Morato SAA, Pie MR (2015) Three New Species of Phytotelm-Breeding Melanophryniscus from the Atlantic Rainforest of Southern Brazil (Anura: Bufonidae). PlosOne 10(12): e0142791. https://doi.org/10.1371/journal. pone. 0142791
Caldart VM, Santos TG, Maneyro R (2013) The advertisement and release calls of Melanophryniscus pachyrhynus (Miran-da-Ribeiro, 1920) from the central region of Rio Grande do Sul, southern Brazil. Acta Herpetologica 8(2): 115-122.
Caramaschi U, Cruz CAG (2002) Taxonomic status of Atelopus pachyrhynus Miranda-Ribeiro, 1920, redescription of Melanophryniscus tumifrons (Boulenger, 1905), and descriptions of two new species of Melanophryniscus from the state of Santa Catarina, Brazil (Amphibia, Anura, Bufonidae). Arquivos do Museu Nacional 60(4): 303-314.
Carvalho TR, Giaretta AA (2013) Bioacoustics reveals two new syntopic species of Adenomera Steindachner (Anura: Leptodactylidae: Leptodactylinae) in the Cerrado of central Brazil. Zootaxa 3731(3): 533-551.
Daly JW, Wilham JM, Spande TF, Garraffo HM, Gil RR, Silva GL, Vaira M (2007) Alkaloids in bufonid toads (Melanophryniscus): temporal and geographic determinants for two Argen-
tinian species. Journal of Chemical Ecology 33(4): 871-887. https://doi.org/10.1007/s10886-007-9261-x
Duellman WE, Trueb L (1986) Biology of Amphibians. Baltimore, Johns Hopkins University Press, 670 pp.
Duré MI, Schaefer EF, Kehr AI (2015) Acoustic Repertoire of Melanophryniscus cupreuscapularis (Céspedez and Álvarez 2000) (Anura: Bufonidae): Advertisement, Encounter, and Release Calls. Journal of Herpetology 49(1): 53-59.
Erdtmann LK, Lima AP (2013) Environmental effects on anuran call design: what we know and what we need to know. Ethology Ecology \& Evolution 25(1): 1-11. https://doi.org/1 0.1080/03949370.2012.744356

Ferrari L, Vaira M (2008) Análisis comparativo de la estructura del canto de anuncio de tres poblaciones de Melanophryniscus rubriventris (Vellard, 1947) (Anura: Bufonidae). Cuadernos de Herpetologia 22: 25-34.
Frost DR (2018) Amphibian Species of the World: an Online Reference. New York, American Museum of Natural History, v. 6.0. http://research.amnh.org/herpetology/amphibia/index.html
Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CFB, de Sá RO, Channing A, Wilkinson M, Donnellan SC, Raxworthy CJ, Campbell JA, Blotto BL, Moler P, Drewes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC (2006) The Amphibian Tree of Life. Bulletin of the American Museum of Natural History 297: 1-291.
Gerhardt HC (1991). Female mate choice in treefrogs: static and dynamic acoustic criteria. Animal Behaviour 42(4): 615-635. https://doi.org/10.1016/S0003-3472(05)80245-3
Gerhardt HC, Davis MS (1988) Variation in the coding of species identify in the advertisement calls of Litoria verreauxi (Anura: Hylidae). Evolution 42: 556-563.
Haddad CF, Pombal-Jr JP (1998) Redescription of Physalaemus spiniger (Anura: Leptodactylidae) and description of two new reproductive modes. Journal of Herpetology 557-565.
Heyer WR (1971) Mating calls of some frogs from Thailand. Fieldiana Zoology 58: 61-82.
Köhler J, Jansen M, Rodríguez A, Kok PJR, Toledo LF, Emmrich M, Glaw F, Haddad CFB, Rödel MO, Vences M (2017) The use of bioacoustics in anuran taxonomy: Theory, terminology, methods and recommendations for best practice. Zootaxa 4251: 1-124. https://doi.org/10.11646/zootaxa.4251.1.1
Kurth M, Hörnes D, Esser S, Rödder D (2013) Notes on the acoustic repertoire of Melanophryniscus klappenbachi Prigioni \& Langone, 2000. Zootaxa 3626: 597-600.
Kwet A, Miranda T (2001) Zur Biologie und taxonomie der Schwarz-kro te Melanophryniscus atroluteus (Miranda-Ribeiro, 1920). Herpetofauna 23: 19-27.
Kwet A, Maneyro R, Zillkens A, Mebs D (2005) Advertisement call of Melanophryniscus dorsalis (Mertens, 1933) and M. montevidensis (Phillipi, 1902), two parapatric species from southern Brazil and Uruguay, with comments on morphological variation in the Melanophryniscus stelzneri group (Anura: Bufonidae). Salamandra 41: 3-20.

Kwet A, Lingnau R, Di-Bernardo M (2010) Pró-Mata: Anfíbios da Serra Gaúcha, sul do Brasil. Tübingen, Brasilien-Zentrum, University of Tübingen, 148 pp .
Langone JA, Segalla MV, Bornschein M, de Sá RO (2008) A new reproductive mode in the genus Melanophryniscus Gallardo, 1961 (Anura: Bufonidae) with description of a new species from the state of Paraná, Brazil. South American Journal of Herpetololy 3(1): 1-9.
Larson PM, de Sá RO, Arrieta D (2003) Chondrocranial, hyobranchial and internal oral morphology in larvae of the basal bufonid genus Melanophryniscus (Amphibia: Anura). Acta Zoologica 84: 145-154.
Maneyro R, Loebmann D, Tozetti A, Fonte LFM (2017) Anfíbios das planícies costeiras do extreme sul do Brasil e Uruguai. São Paulo, Anolis Books, 176 pp.
Martin WF (1972) Evolution of vocalization in the genus Bufo. In: Blair WF (Ed.) Evolution in the genus Bufo. Austin, University of Texas Press, 279-309.
McDiarmid RW (1971) Comparative morphology and evolution of frogs of the neotropical genera Atelopus, Dendrophryniscus, Melanophryniscus and Oreophrynella. Bulletin of the Los Angeles County Museum of Natural History Science 12: 1-66.
Morton E S (1975) Ecological sources of selection on avian sounds. The American Naturalist 109(965): 17-34. https:// doi.org/10.1086/282971
Pansonato A, Mudrek JR, Simioni F, Alves Martins I, Strüssmann C (2014) Geographical variation in morphological and bioacoustic traits of Pseudopaludicola mystacalis (Cope, 1887) and a reassessment of the taxonomic status of Pseudopaludicola serrana Toledo, 2010 (Anura: Leptodactylidae:

Leiuperinae). Advances in Zoology 2014: 1-13. https://doi. org/10.1155/2014/563165
Peloso PLV, Faivovich J, Grant T, Gasparini JL, Haddad CFB (2012) An extraordinary new species of Melanophryniscus (Anura, Bufonidae) from Southeastern Brazil. American Museum Novitates 3762: 1-32.
Sueur J, Aubin T, Simonis C (2008) Equipment review: seewave, a free modular tool for sound analysis and synthesis. Bioacoustics 18: 213-226.
Van Bocxlaer I, Loader SP, Roelants K, Biju SD, Menegon M, Bossuyt F (2010) Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 327: 679-682.
Wells KD (2007) The ecology and behavior of amphibians. University of Chicago Press, 1400 pp .

Submitted: April 10, 2018
Accepted: May 11, 2018
Available online: July 31, 2019
Editorial responsibility: Mauricio O. Moura

Author Contributions: LRM conducted the field works, recording the vocalizations and collecting the specimens, SM, DJS and LRM analyzed the data and wrote the paper. Competing Interests: The authors have declared that no competing interests exist.
© 2019 Sociedade Brasileira de Zoologia. Published by Pensoft Publishers at https://zoologia.pensoft.net

